Как подключить реле к микроконтроллеру

Микроконтроллеры / Для начинающих / Подключение мощной нагрузки /

Микроконтроллеры для начинающих Что нужно для того, чтобы стать профессиональным разработчиком программ для микроконтроллеров и выйти на такой уровень мастерства, который позволит с лёгкостью найти и устроиться на работу с высокой зарплатой (средняя зарплата программиста микроконтроллеров по России на начало 2017 года составляет 80 000 рублей). Подробнее...

Продолжаем рассказ о подключении мощной нагрузки к микроконтроллеру. Мы уже знаем, как подключить к микроконтроллеру оптрон и транзистор. Теперь пришла очередь разобраться с электромагнитным реле.

На первый взгляд подключение реле - самое простое. Однако это обманчивая простота. Потому что, во-первых, большинство реле потребляют ток значительно больший, чем может обеспечить на выходе микроконтроллер. А во-вторых, электромагнитное реле - это индуктивная нагрузка, которая имеет свои особенности (об этом дальше). Именно поэтому новички нередко выводят выходы микроконтроллера из строя, пытаясь подключить к ним реле.

Как подключить реле к микроконтроллеру и избежать при этом неприятностей - чуть позже. А пока для самых-самых начинающих очень коротко расскажу

Что такое электромагнитное реле

Электромагнитное реле - это специальное устройство, которое состоит, как минимум, из четырёх основных элементов (см. рис.):

  1. Катушка
  2. Сердечник
  3. Якорь
  4. Группа контактов

Что такое электромагнитное реле

Катушка (в зависимости от вида реле) может быть рассчитана либо на переменное напряжение, либо на постоянное.

Когда на катушку подаётся напряжение, то вокруг неё создаётся магнитное поле, которое намагничивает сердечник. Тогда якорь притягивается к сердечнику и сдвигает группу контактов. В зависимости от конструкции контакты либо размыкаются, либо замыкаются, либо переключаются. В группе контактов могут быть как нормально замкнутые, так и нормально разомкнутые контакты. И контактов может быть и два, и три и более.

Когда напряжение с катушки снимается, то и контакты возвращаются в исходное положение.

Нормально замкнутый (нормально закрытый) контакт - это контакт, который замкнут при отсутствии напряжения на катушке. Нормально размокнутый (нормально открытый), соответственно, разомкнут, когда напряжения на катушке нет, и замыкается, когда напряжение на катушку подаётся. На рисунке показан нормально разомкнутый контакт.

На схемах и в описаниях реле обычно используются сокращения: НО - нормально открытый (нормально разомкнутый), НЗ - нормально закрытый (нормально замкнутый).

Основные характеристики реле

Чтобы использовать реле в своих устройствах (не обязательно на микроконтроллерах), вам нужно знать, подойдёт оно для ваших целей или нет. Для этого надо знать характеристики реле. Основные характеристики:

  1. Вид напряжения катушки (переменное или постоянное). Для подключения непосредственно к микроконтроллеру либо через транзистор можно использовать только реле постоянного тока (контакты реле, разумеется, могут управлять и переменным, и постоянным током).
  2. Напряжение катушки (то есть какое напряжение надо подать на катушку, чтобы якорь надёжно примагнитился к сердечнику).
  3. Ток потребления катушки.
  4. Номинальный ток контактов (то есть ток через контакты реле, при котором они будут работать без повреждения в течение длительного времени).
  5. Время срабатывания реле. То есть сколько времени требуется на примагничивание якоря.
  6. Время отпускания реле. То есть сколько времени требуется для отмагничивания (отпускания) якоря.

Последние два параметра обычно не принимаются во внимание. Однако в тех случаях, когда требуется определённое быстродействие (например, срабатывание каких-то устройств защиты), то эти значения надо учитывать.

Как подключить нагрузку через реле

Ну вот наконец мы добрались до подключения нагрузки к микроконтроллеру через реле. Предлагаю вспомнить статью о дискретных выходах. Если вы помните, то подключить нагрузку к выходу микроконтроллера можно двумя способами: с общим плюсом и с общим минусом.

Если мы хотим подключить реле к микроконтроллеру напрямую, то способ с общим минусом, скорее всего, отпадает, потому что при таком способе микроконтроллер способен управлять очень слабой нагрузкой. А почти все реле потребляют несколько десятков или даже сотен мА.

Да и способ с общим минусом тоже в большинстве случаев не позволит подключить реле напрямую к микроконтроллеру по той же причине (при таком способе микроконтроллер обычно может обеспечить на выходе 15-20 мА, что будет недостаточно для большинства реле).

Малым током потребления обычно обладают герконовые реле. Однако они и коммутировать могут только небольшие токи.

Но тут есть одна хитрость. Дело в том, что чем выше напряжение катушки реле, тем меньше ток потребления. Поэтому, если в вашем устройстве есть источник питания, например, на 24 В и выше, то вы вполне сможете подобрать реле с приемлемым током потребления.

Например, реле Finder 32-й серии при напряжении катушки 24В потребляет всего 8,3 мА.

В этом случае (когда у вас есть два источника напряжения) подключить реле можно примерно так:

Как подключить нагрузку через реле


Как подключить реле к транзистору

Однако использовать дополнительный источник питания в устройстве в большинстве с лучаев возможности нет. Поэтому обычно реле подключают к выходу микроконтроллера через дополнительный транзистор. Как это делать, я уже рассказывал. Поэтому повторяться не буду.

Меры безопасности

Реле обычно используют, когда требуется управлять мощной нагрузкой и/или высоким напряжением.

Поэтому здесь надо помнить о мерах безопасности. Желательно разделять слаботочную низковольтную цепь и цепь высокого напряжения. Например, устанавливать реле в отдельном корпусе или в отдельном изолированном отсеке корпуса, чтобы при наладке устройства случайно не коснуться контактов с высоким напряжением.

Кроме того есть опасность вывести из строя выход микроконтроллера или дополнительный транзистор.

Дело в том, что катушка реле - это индуктивная нагрузка со всеми вытекающими из этого последствиями.

И здесь есть два риска:

  1. В момент подачи напряжения на катушку индуктивное сопротивление катушки равно нулю, поэтому будет кратковременный бросок тока, значительно превышающий номинальный ток. Но большинство выходных транзисторов этот бросок выдерживают, так что об этом можно не думать, но знать и понимать это надо.
  2. В момент снятия напряжения (в момент разрыва цепи питания катушки) возникает ЭДС самоиндкуции, которая может вывести из строя выходной транзистор микроконтроллера и/или дополнительный транзистор, к которому подключена катушка реле. Чтобы избежать этого, всегда необходимо параллельно с катушкой включать защитный диод (см. рис.). Почему так происходит, рассказывать не буду. Кому интересно, вспоминайте или изучайте электротехнику.

Подключение диода к реле

ВАЖНО!
Обратите внимание на включение диода. Он должен включаться именно так, а не наоборот, как думают некоторые.


Вступить в группу "Основы программирования"

Подписаться на RUTUBE-канал

Подписаться на Дзен-канал

Подписаться на рассылки по программированию

Микроконтроллеры для ЧАЙНИКОВ Микроконтроллеры для ЧАЙНИКОВ

Бесплатная рассылка о микроконтроллерах. Рассылка содержит как бесплатную информацию для начинающих, так и ссылки на платные продукты (книги, видеокурсы и др.) для тех, кто захочет вникнуть в тему более глубоко. Подробнее...

Инфо-МАСТЕР ®
Все права защищены ©
e-mail: mail@info-master.su